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1 BASICS

1 Basics

(AB)−1 = B−1A−1

(ABC...)−1 = ...C−1B−1A−1

(AT )−1 = (A−1)T

(A + B)T = AT + BT

(AB)T = BT AT

(ABC...)T = ...CT BT AT

(AH)−1 = (A−1)H

(A + B)H = AH + BH

(AB)H = BHAH

(ABC...)H = ...CHBHAH

1.1 Trace and Determinants

Tr(A) =
∑

i

Aii =
∑

i

λi, λi = eig(A)

Tr(A) = Tr(AT )

Tr(AB) = Tr(BA)

Tr(A + B) = Tr(A) + Tr(B)

Tr(ABC) = Tr(BCA) = Tr(CAB)

det(A) =
∏

i

λi λi = eig(A)

det(AB) = det(A) det(B), if A and B are invertible

det(A−1) =
1

det(A)
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1.2 The Special Case 2x2 1 BASICS

1.2 The Special Case 2x2

Consider the matrix A

A =
[

A11 A12

A21 A22

]

Determinant and trace

det(A) = A11A22 −A12A21

Tr(A) = A11 + A22

Eigenvalues
λ2 − λ · Tr(A) + det(A) = 0

λ1 =
Tr(A) +

√
Tr(A)2 − 4 det(A)

2
λ2 =

Tr(A)−
√

Tr(A)2 − 4 det(A)
2

λ1 + λ2 = Tr(A) λ1λ2 = det(A)

Eigenvectors

v1 ∝
[

A12

λ1 −A11

]
v2 ∝

[
A12

λ2 −A11

]

Inverse

A−1 =
1

det(A)

[
A22 −A12

−A21 A11

]
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2 DERIVATIVES

2 Derivatives

This section is covering differentiation of a number of expressions with respect to
a matrix X. Note that it is always assumed that X has no special structure, i.e.
that the elements of X are independent (e.g. not symmetric, Toeplitz, positive
definite). See section 2.5 for differentiation of structured matrices. The basic
assumptions can be written in a formula as

∂Xkl

∂Xij
= δikδlj

that is for e.g. vector forms,
[
∂x
∂y

]

i

=
∂xi

∂y

[
∂x

∂y

]

i

=
∂x

∂yi

[
∂x
∂y

]

ij

=
∂xi

∂yj

The following rules are general and very useful when deriving the differential of
an expression ([10]):

∂A = 0 (A is a constant) (1)
∂(αX) = α∂X (2)

∂(X + Y) = ∂X + ∂Y (3)
∂(Tr(X)) = Tr(∂X) (4)

∂(XY) = (∂X)Y + X(∂Y) (5)
∂(X ◦Y) = (∂X) ◦Y + X ◦ (∂Y) (6)
∂(X⊗Y) = (∂X)⊗Y + X⊗ (∂Y) (7)

∂(X−1) = −X−1(∂X)X−1 (8)
∂(det(X)) = det(X)Tr(X−1∂X) (9)

∂(ln(det(X))) = Tr(X−1∂X) (10)
∂XT = (∂X)T (11)
∂XH = (∂X)H (12)

2.1 Derivatives of a Determinant

2.1.1 General form

∂ det(Y)
∂x

= det(Y)Tr
[
Y−1 ∂Y

∂x

]

2.1.2 Linear forms

∂ det(X)
∂X

= det(X)(X−1)T

∂ det(AXB)
∂X

= det(AXB)(X−1)T = det(AXB)(XT )−1
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2.2 Derivatives of an Inverse 2 DERIVATIVES

2.1.3 Square forms

If X is square and invertible, then

∂ det(XT AX)
∂X

= 2 det(XT AX)X−T

If X is not square but A is symmetric, then

∂ det(XT AX)
∂X

= 2 det(XT AX)AX(XT AX)−1

If X is not square and A is not symmetric, then

∂ det(XT AX)
∂X

= det(XT AX)(AX(XT AX)−1 + AT X(XT AT X)−1) (13)

2.1.4 Other nonlinear forms

Some special cases are (See [8])

∂ ln det(XT X)|
∂X

= 2(X+)T

∂ ln det(XT X)
∂X+

= −2XT

∂ ln | det(X)|
∂X

= (X−1)T = (XT )−1

∂ det(Xk)
∂X

= k det(Xk)X−T

See [7].

2.2 Derivatives of an Inverse

From [15] we have the basic identity

∂Y−1

∂x
= −Y−1 ∂Y

∂x
Y−1

from which it follows

∂(X−1)kl

∂Xij
= −(X−1)ki(X−1)jl

∂aT X−1b
∂X

= −X−T abT X−T

∂ det(X−1)
∂X

= − det(X−1)(X−1)T

∂Tr(AX−1B)
∂X

= −(X−1BAX−1)T
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2.3 Derivatives of Matrices, Vectors and Scalar Forms 2 DERIVATIVES

2.3 Derivatives of Matrices, Vectors and Scalar Forms

2.3.1 First Order

∂xT b
∂x

=
∂bT x
∂x

= b

∂aT Xb
∂X

= abT

∂aT XT b
∂X

= baT

∂aT Xa
∂X

=
∂aT XT a

∂X
= aaT

∂X
∂Xij

= Jij

∂(XA)ij

∂Xmn
= δim(A)nj = (JmnA)ij

∂(XT A)ij

∂Xmn
= δin(A)mj = (JnmA)ij

2.3.2 Second Order

∂

∂Xij

∑

klmn

XklXmn = 2
∑

kl

Xkl

∂bT XT Xc
∂X

= X(bcT + cbT )

∂(Bx + b)T C(Dx + d)
∂x

= BT C(Dx + d) + DT CT (Bx + b)

∂(XT BX)kl

∂Xij
= δlj(XT B)ki + δkj(BX)il

∂(XT BX)
∂Xij

= XT BJij + JjiBX (Jij)kl = δikδjl

See Sec 8.2 for useful properties of the Single-entry matrix Jij

∂xT Bx
∂x

= (B + BT )x

∂bT XT DXc
∂X

= DT XbcT + DXcbT

∂

∂X
(Xb + c)T D(Xb + c) = (D + DT )(Xb + c)bT
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2.3 Derivatives of Matrices, Vectors and Scalar Forms 2 DERIVATIVES

Assume W is symmetric, then

∂

∂s
(x−As)T W(x−As) = −2AT W(x−As)

∂

∂x
(x−As)T W(x−As) = −2W(x−As)

∂

∂A
(x−As)T W(x−As) = −2W(x−As)sT

2.3.3 Higher order and non-linear

∂

∂X
aT Xnb =

n−1∑
r=0

(Xr)T abT (Xn−1−r)T (14)

∂

∂X
aT (Xn)T Xnb =

n−1∑
r=0

[
Xn−1−rabT (Xn)T Xr

+(Xr)T XnabT (Xn−1−r)T
]

(15)

See A.0.1 for a proof.

Assume s and r are functions of x, i.e. s = s(x), r = r(x), and that A is a
constant, then

∂

∂x
sT As =

[
∂s
∂x

]T

(A + AT )s

∂

∂x
sT Ar =

[
∂s
∂x

]T

As +
[

∂r
∂x

]T

AT r

2.3.4 Gradient and Hessian

Using the above we have for the gradient and the hessian

f = xT Ax + bT x

∇xf =
∂f

∂x
= (A + AT )x + b

∂2f

∂x∂xT
= A + AT
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2.4 Derivatives of Traces 2 DERIVATIVES

2.4 Derivatives of Traces

2.4.1 First Order

∂

∂X
Tr(X) = I

∂

∂X
Tr(XB) = BT (16)

∂

∂X
Tr(BXC) = BT CT

∂

∂X
Tr(BXT C) = CB

∂

∂X
Tr(XT C) = C

∂

∂X
Tr(BXT ) = B

2.4.2 Second Order

∂

∂X
Tr(X2) = 2X

∂

∂X
Tr(X2B) = (XB + BX)T

∂

∂X
Tr(XT BX) = BX + BT X

∂

∂X
Tr(XBXT ) = XBT + XB

∂

∂X
Tr(XT X) = 2X

∂

∂X
Tr(BXXT ) = (B + BT )X

∂

∂X
Tr(BT XT CXB) = CT XBBT + CXBBT

∂

∂X
Tr

[
XT BXC

]
= BXC + BT XCT

∂

∂X
Tr(AXBXT C) = AT CT XBT + CAXB

∂

∂X
Tr

[
(AXb + c)(AXb + c)T

]
= 2AT (AXb + c)bT

See [7].
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2.5 Derivatives of Structured Matrices 2 DERIVATIVES

2.4.3 Higher Order

∂

∂X
Tr(Xk) = k(Xk−1)T

∂

∂X
Tr(AXk) =

k−1∑
r=0

(XrAXk−r−1)T

∂

∂X
Tr

[
BT XT CXXT CXB

]
= CXXT CXBBT + CT XBBT XT CT X

+ CXBBT XT CX + CT XXT CT XBBT

2.4.4 Other

∂

∂X
Tr(AX−1B) = −(X−1BAX−1)T = −X−T AT BT X−T

Assume B and C to be symmetric, then

∂

∂X
Tr

[
(XT CX)−1A

]
= −(CX(XT CX)−1)(A + AT )(XT CX)−1

∂

∂X
Tr

[
(XT CX)−1(XT BX)

]
= −2CX(XT CX)−1XT BX(XT CX)−1

+2BX(XT CX)−1

See [7].

2.5 Derivatives of Structured Matrices

Assume that the matrix A has some structure, i.e. is symmetric, toeplitz, etc.
In that case the derivatives of the previous section does not apply in general.
In stead, consider the following general rule for differentiating a scalar function
f(A)

df

dAij
=

∑

kl

∂f

∂Akl

∂Akl

∂Aij
= Tr

[[
∂f

∂A

]T
∂A
∂Aij

]

The matrix differentiated with respect to itself is in this document referred to
as the structure matrix of A and is defined simply by

∂A
∂Aij

= Sij

If A has no special structure we have simply Sij = Jij , that is, the structure
matrix is simply the singleentry matrix. Many structures have a representation
in singleentry matrices, see Sec. 8.2.7 for more examples of structure matrices.
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2.5 Derivatives of Structured Matrices 2 DERIVATIVES

2.5.1 Symmetric

If A is symmetric, then Sij = Jij + Jji − JijJij and therefore

df

dA
=

[
∂f

∂A

]
+

[
∂f

∂A

]T

− diag
[

∂f

∂A

]

That is, e.g., ([5], [16]):

∂Tr(AX)
∂X

= A + AT − (A ◦ I), see (20) (17)

∂ det(X)
∂X

= 2X− (X ◦ I) (18)

∂ ln det(X)
∂X

= 2X−1 − (X−1 ◦ I) (19)

2.5.2 Diagonal

If X is diagonal, then ([10]):

∂Tr(AX)
∂X

= A ◦ I (20)
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3 INVERSES

3 Inverses

3.1 Exact Relations

3.1.1 The Woodbury identity

(A + CBCT )−1 = A−1 −A−1C(B−1 + CT A−1C)−1CT A−1

If P,R are positive definite, then (see [17])

(P−1 + BT R−1B)−1BT R−1 = PBT (BPBT + R)−1

3.1.2 The Kailath Variant

(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1

See [4] page 153.

3.1.3 The Searle Set of Identities

The following set of identities, can be found in [13], page 151,

(I + A−1)−1 = A(A + I)−1

(A + BBT )−1B = A−1B(I + BT A−1B)−1

(A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A

A−A(A + B)−1A = B−B(A + B)−1B

A−1 + B−1 = A−1(A + B)B−1

(I + AB)−1 = I−A(I + BA)−1B

(I + AB)−1A = A(I + AB)−1

3.2 Implication on Inverses

(A + B)−1 = A−1 + B−1 ⇒ AB−1A = BA−1B

See [13].

3.2.1 A PosDef identity

Assume P,R to be positive definite and invertible, then

(P−1 + BT R−1B)−1BT R−1 = PBT (BPBT + R)−1

See [?].
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3.3 Approximations 3 INVERSES

3.3 Approximations

(I + A)−1 = I−A + A2 −A3 + ...

A−A(I + A)−1A ∼= I−A−1 if A large and symmetric

If σ2 is small then

(Q + σ2M)−1 ∼= Q−1 − σ2Q−1MQ−1

3.4 Generalized Inverse

3.4.1 Definition

A generalized inverse matrix of the matrix A is any matrix A− such that

AA−A = A

The matrix A− is not unique.

3.5 Pseudo Inverse

3.5.1 Definition

The pseudo inverse (or Moore-Penrose inverse) of a matrix A is the matrix A+

that fulfils

I AA+A = A

II A+AA+ = A+

III AA+ symmetric
IV A+A symmetric

The matrix A+ is unique and does always exist.

3.5.2 Properties

Assume A+ to be the pseudo-inverse of A, then (See [3])

(A+)+ = A

(AT )+ = (A+)T

(cA)+ = (1/c)A+

(AT A)+ = A+(AT )+

(AAT )+ = (AT )+A+

Assume A to have full rank, then

(AA+)(AA+) = AA+

(A+A)(A+A) = A+A

Tr(AA+) = rank(AA+) (See [14])
Tr(A+A) = rank(A+A) (See [14])
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3.5 Pseudo Inverse 3 INVERSES

3.5.3 Construction

Assume that A has full rank, then

A n× n Square rank(A) = n ⇒ A+ = A−1

A n×m Broad rank(A) = n ⇒ A+ = AT (AAT )−1

A n×m Tall rank(A) = m ⇒ A+ = (AT A)−1AT

Assume A does not have full rank, i.e. A is n×m and rank(A) = r < min(n,m).
The pseudo inverse A+ can be constructed from the singular value decomposi-
tion A = UDVT , by

A+ = VD+UT

A different way is this: There does always exists two matrices C n × r and D
r ×m of rank r, such that A = CD. Using these matrices it holds that

A+ = DT (DDT )−1(CT C)−1CT

See [3].
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4 COMPLEX MATRICES

4 Complex Matrices

4.1 Complex Derivatives

In order to differentiate an expression f(z) with respect to a complex z, the
Cauchy-Riemann equations have to be satisfied ([7]):

df(z)
dz

=
∂<(f(z))

∂<z
+ i

∂=(f(z))
∂<z

(21)

and
df(z)
dz

= −i
∂<(f(z))

∂=z
+

∂=(f(z))
∂=z

(22)

or in a more compact form:

∂f(z)
∂=z

= i
∂f(z)
∂<z

. (23)

A complex function that satisfies the Cauchy-Riemann equations for points in a
region R is said yo be analytic in this region R. In general, expressions involving
complex conjugate or conjugate transpose do not satisfy the Cauchy-Riemann
equations. In order to avoid this problem, a more generalized definition of
complex derivative is used ([12], [6]):

• Generalized Complex Derivative:

df(z)
dz

=
1
2

(∂f(z)
∂<z

− i
∂f(z)
∂=z

)
(24)

• Conjugate Complex Derivative

df(z)
dz∗

=
1
2

(∂f(z)
∂<z

+ i
∂f(z)
∂=z

)
(25)

The Generalized Complex Derivative equals the normal derivative, when f is an
analytic function. For a non-analytic function such as f(z) = z∗, the derivative
equals zero. The Conjugate Complex Derivative equals zero, when f is an
analytic function. The Conjugate Complex Derivative has e.g been used by [11]
when deriving a complex gradient.
Notice:

df(z)
dz

6= ∂f(z)
∂<z

+ i
∂f(z)
∂=z

(26)

• Complex Gradient Vector: If f is a real function of a complex vector z,
then the complex gradient vector is given by ([9, p. 798])

∇f(z) = 2
df(z)
dz∗

(27)

=
∂f(z)
∂<z

+ i
∂f(z)
∂=z
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4.1 Complex Derivatives 4 COMPLEX MATRICES

• Complex Gradient Matrix: If f is a real function of a complex matrix Z,
then the complex gradient matrix is given by ([2])

∇f(Z) = 2
df(Z)
dZ∗

(28)

=
∂f(Z)
∂<Z

+ i
∂f(Z)
∂=Z

These expressions can be used for gradient descent algorithms.

4.1.1 The Chain Rule for complex numbers

The chain rule is a little more complicated when the function of a complex
u = f(x) is non-analytic. For a non-analytic function, the following chain rule
can be applied ([?])

∂g(u)
∂x

=
∂g

∂u

∂u

∂x
+

∂g

∂u∗
∂u∗

∂x
(29)

=
∂g

∂u

∂u

∂x
+

(∂g∗

∂u

)∗ ∂u∗

∂x

Notice, if the function is analytic, the second term reduces to zero, and the func-
tion is reduced to the normal well-known chain rule. For the matrix derivative
of a scalar function g(U), the chain rule can be written the following way:

∂g(U)
∂X

=
Tr((∂g(U)

∂U )T ∂U)
∂X

+
Tr((∂g(U)

∂U∗ )T ∂U∗)
∂X

. (30)

4.1.2 Complex Derivatives of Traces

If the derivatives involve complex numbers, the conjugate transpose is often in-
volved. The most useful way to show complex derivative is to show the derivative
with respect to the real and the imaginary part separately. An easy example is:

∂Tr(X∗)
∂<X

=
∂Tr(XH)

∂<X
= I (31)

i
∂Tr(X∗)

∂=X
= i

∂Tr(XH)
∂=X

= I (32)

Since the two results have the same sign, the conjugate complex derivative (25)
should be used.

∂Tr(X)
∂<X

=
∂Tr(XT )

∂<X
= I (33)

i
∂Tr(X)
∂=X

= i
∂Tr(XT )

∂=X
= −I (34)

Here, the two results have different signs, the generalized complex derivative
(24) should be used. Hereby, it can be seen that (??) holds even if X is a
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4.1 Complex Derivatives 4 COMPLEX MATRICES

complex number.

∂Tr(AXH)
∂<X

= A (35)

i
∂Tr(AXH)

∂=X
= A (36)

∂Tr(AX∗)
∂<X

= AT (37)

i
∂Tr(AX∗)

∂=X
= AT (38)

∂Tr(XXH)
∂<X

=
∂Tr(XHX)

∂<X
= 2<X (39)

i
∂Tr(XXH)

∂=X
= i

∂Tr(XHX)
∂=X

= i2=X (40)

By inserting (39) and (40) in (24) and (25), it can be seen that

∂Tr(XXH)
∂X

= X∗ (41)

∂Tr(XXH)
∂X∗ = X (42)

Since the function Tr(XXH) is a real function of the complex matrix X, the
complex gradient matrix (28) is given by

∇Tr(XXH) = 2
∂Tr(XXH)

∂X∗ = 2X (43)

4.1.3 Complex Derivative Involving Determinants

Here, a calculation example is provided. The objective is to find the derivative
of det(XHAX) with respect to X ∈ Cm×n. The derivative is found with respect
to the real part and the imaginary part of X, by use of (9) and (5), det(XHAX)
can be calculated as (see Sec. A.0.2 for details)

∂ det(XHAX)
∂X

=
1
2

(∂ det(XHAX)
∂<X

− i
∂ det(XHAX)

∂=X

)

= det(XHAX)
(
(XHAX)−1XHA

)T (44)

and the complex conjugate derivative yields

∂ det(XHAX)
∂X∗ =

1
2

(∂ det(XHAX)
∂<X

+ i
∂ det(XHAX)

∂=X

)

= det(XHAX)AX(XHAX)−1 (45)

Petersen & Pedersen, The Matrix Cookbook (Version: January 5, 2005), Page 19



5 DECOMPOSITIONS

5 Decompositions

5.1 Eigenvalues and Eigenvectors

5.1.1 Definition

The eigenvectors v and eigenvalues λ are the ones satisfying

Avi = λivi

AV = VD, (D)ij = δijλi

where the columns of V are the vectors vi

5.1.2 General Properties

eig(AB) = eig(BA)
A is n×m ⇒ At most min(n,m) distinct λi

rank(A) = r ⇒ At most r non-zero λi

5.1.3 Symmetric

Assume A is symmetric, then

VVT = I (i.e. V is orthogonal)
λi ∈ R (i.e. λi is real)

Tr(Ap) =
∑

iλ
p
i

eig(I + cA) = 1 + cλi

eig(A−1) = λ−1
i

5.2 Singular Value Decomposition

Any n×m matrix A can be written as

A = UDVT

where
U = eigenvectors of AAT n× n

D =
√

diag(eig(AAT )) n×m
V = eigenvectors of AT A m×m

5.2.1 Symmetric Square decomposed into squares

Assume A to be n× n and symmetric. Then
[

A
]

=
[

V
] [

D
] [

VT
]

where D is diagonal with the eigenvalues of A and V is orthogonal and the
eigenvectors of A.
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5.2.2 Square decomposed into squares

Assume A to be n× n. Then
[

A
]

=
[

V
] [

D
] [

UT
]

where D is diagonal with the square root of the eigenvalues of AAT , V is the
eigenvectors of AAT and UT is the eigenvectors of AT A.

5.2.3 Square decomposed into rectangular

Assume V∗D∗UT
∗ = 0 then we can expand the SVD of A into

[
A

]
=

[
V V∗

] [
D 0
0 D∗

] [
UT

UT
∗

]

where the SVD of A is A = VDUT .

5.2.4 Rectangular decomposition I

Assume A is n×m
[

A
]

=
[

V
] [

D
] [

UT
]

where D is diagonal with the square root of the eigenvalues of AAT , V is the
eigenvectors of AAT and UT is the eigenvectors of AT A.

5.2.5 Rectangular decomposition II

Assume A is n×m

[
A

]
=

[
V

]

 D





 UT




5.2.6 Rectangular decomposition III

Assume A is n×m

[
A

]
=

[
V

] [
D

]

 UT




where D is diagonal with the square root of the eigenvalues of AAT , V is the
eigenvectors of AAT and UT is the eigenvectors of AT A.

5.3 Triangular Decomposition

5.3.1 Cholesky-decomposition

Assume A is positive definite, then

A = BT B

where B is a unique upper triangular matrix.
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6 GENERAL STATISTICS AND PROBABILITY

6 General Statistics and Probability

6.1 Moments of any distribution

6.1.1 Mean and covariance of linear forms

Assume X and x to be a matrix and a vector of random variables. Then

E[AXB + C] = AE[X]B + C

Var[Ax] = AVar[x]AT

Cov[Ax,By] = ACov[x,y]BT

See [14].

6.1.2 Mean and Variance of Square Forms

Assume A is symmetric, c = E[x] and Σ = Var[x]. Assume also that all
coordinates xi are independent, have the same central moments µ1, µ2, µ3, µ4

and denote a = diag(A). Then

E[xT Ax] = Tr(AΣ) + cT Ac

Var[xT Ax] = 2µ2
2Tr(A2) + 4µ2cT A2c + 4µ3cT Aa + (µ4 − 3µ2

2)a
T a

See [14]

6.2 Expectations

Assume x to be a stochastic vector with mean m, covariance M and central
moments vr = E[(x−m)r].

6.2.1 Linear Forms

E[Ax + b] = Am + b

E[Ax] = Am

E[x + b] = m + b

6.2.2 Quadratic Forms

E[(Ax + a)(Bx + b)T ] = AMBT + (Am + a)(Bm + b)T

E[xxT ] = M + mmT

E[xaT x] = (M + mmT )a
E[xT axT ] = aT (M + mmT )

E[(Ax)(Ax)T ] = A(M + mmT )AT

E[(x + a)(x + a)T ] = M + (m + a)(m + a)T
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6.2 Expectations 6 GENERAL STATISTICS AND PROBABILITY

E[(Ax + a)T (Bx + b)] = Tr(AMBT ) + (Am + a)T (Bm + b)
E[xT x] = Tr(M) + mT m

E[xT Ax] = Tr(AM) + mT Am

E[(Ax)T (Ax)] = Tr(AMAT ) + (Am)T (Am)
E[(x + a)T (x + a)] = Tr(M) + (m + a)T (m + a)

See [7].

6.2.3 Cubic Forms

Assume x to be independent, then

E[(Ax + a)(Bx + b)T (Cx + c)] = Adiag(BT C)v3

+Tr(BMCT )(Am + a)
+AMCT (Bm + b)
+(AMBT + (Am + a)(Bm + b)T )(Cm + c)

E[xxT x] = v3 + 2Mm + (Tr(M) + mT m)m
E[(Ax + a)(Ax + a)T (Ax + a)] = Adiag(AT A)v3

+[2AMAT + (Ax + a)(Ax + a)T ](Am + a)
+Tr(AMAT )(Am + a)

E[(Ax + a)bT (Cx + c)(Dx + d)T ] = (Ax + a)bT (CMDT + (Cm + c)(Dm + d)T )
+(AMCT + (Am + a)(Cm + c)T )b(Dm + d)T

+bT (Cm + c)(AMDT − (Am + a)(Dm + d)T )

See [7].
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7 GAUSSIANS

7 Gaussians

7.1 One Dimensional

7.1.1 Density and Normalization

The density is

p(s) =
1√

2πσ2
exp

(
− (s− µ)2

2σ2

)

Normalization integrals
∫

e−
(s−µ)2

2σ2 ds =
√

2πσ2

∫
e−(ax2+bx+c)dx =

√
π

a
exp

[
b2 − 4ac

4a

]

∫
ec2x2+c1x+c0dx =

√
π

−c2
exp

[
c2
1 − 4c2c0

−4c2

]

7.1.2 Completing the Squares

c2x
2 + c1x + c0 = −a(x− b)2 + w

−a = c2 b =
1
2

c1

c2
w =

1
4

c2
1

c2
+ c0

or
c2x

2 + c1x + c0 = − 1
2σ2

(x− µ)2 + d

µ =
−c1

2c2
σ2 =

−1
2c2

d = c0 − c2
1

4c2

7.1.3 Moments

If the density is expressed by

p(x) =
1√

2πσ2
exp

[
− (s− µ)2

2σ2

]
or p(x) = C exp(c2x

2 + c1x)

then the first few basic moments are

〈x〉 = µ = −c1
2c2

〈x2〉 = σ2 + µ2 = −1
2c2

+
(
−c1
2c2

)2

〈x3〉 = 3σ2µ + µ3 = c1
(2c2)2

[
3− c2

1
2c2

]

〈x4〉 = µ4 + 6µ2σ2 + 3σ4 =
(

c1
2c2

)4

+ 6
(

c1
2c2

)2 (
−1
2c2

)
+ 3

(
1

2c2

)2

and the central moments are
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〈(x− µ)〉 = 0 = 0
〈(x− µ)2〉 = σ2 =

[
−1
2c2

]

〈(x− µ)3〉 = 0 = 0

〈(x− µ)4〉 = 3σ4 = 3
[

1
2c2

]2

A kind of pseudo-moments (un-normalized integrals) can easily be derived as
∫

exp(c2x
2 + c1x)xndx = Z〈xn〉 =

√
π

−c2
exp

[
c2
1

−4c2

]
〈xn〉

From the un-centralized moments one can derive other entities like

〈x2〉 − 〈x〉2 = σ2 = −1
2c2

〈x3〉 − 〈x2〉〈x〉 = 2σ2µ = 2c1
(2c2)2

〈x4〉 − 〈x2〉2 = 2σ4 + 4µ2σ2 = 2
(2c2)2

[
1− 4 c2

1
2c2

]

7.2 Basics

7.2.1 Density and normalization

The density of x ∼ N (m,Σ) is

p(x) =
1√

det(2πΣ)
exp

[
−1

2
(x−m)T Σ−1(x−m)

]

Note that if x is d-dimensional, then det(2πΣ) = (2π)d det(Σ).
Integration and normalization

∫
exp

[
−1

2
(x−m)T Σ−1(x−m)

]
dx =

√
det(2πΣ)

∫
exp

[
−1

2
xT Ax + bT x

]
dx =

√
det(2πA−1) exp

[
1
2
bT A−1b

]

∫
exp

[
−1

2
Tr(ST AS) + Tr(BT S)

]
dS =

√
det(2πA−1) exp

[
1
2
Tr(BT A−1B)

]

The derivatives of the density are

∂p(x)
∂x

= −p(x)Σ−1(x−m)

∂2p

∂x∂xT
= p(x)

(
Σ−1(x−m)(x−m)T Σ−1 −Σ−1

)

7.2.2 Linear combination

Assume x ∼ N (mx,Σx) and y ∼ N (my,Σy) then

Ax + By + c ∼ N (Amx + Bmy + c,AΣxAT + BΣyBT )

Petersen & Pedersen, The Matrix Cookbook (Version: January 5, 2005), Page 25
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7.2.3 Rearranging Means

NAx[m,Σ] =

√
det(2π(AT Σ−1A)−1)√

det(2πΣ)
Nx[A−1m, (AT Σ−1A)−1]

7.2.4 Rearranging into squared form

If A is symmetric, then

−1
2
xT Ax + bT x = −1

2
(x−A−1b)T A(x−A−1b) +

1
2
bT A−1b

−1
2
Tr(XT AX)+Tr(BT X) = −1

2
Tr[(X−A−1B)T A(X−A−1B)]+

1
2
Tr(BT A−1B)

7.2.5 Sum of two squared forms

In vector formulation (assuming Σ1,Σ2 are symmetric)

−1
2
(x−m1)T Σ−1

1 (x−m1)

−1
2
(x−m2)T Σ−1

2 (x−m2)

= −1
2
(x−mc)T Σ−1

c (x−mc) + C

Σ−1
c = Σ−1

1 + Σ−1
2

mc = (Σ−1
1 + Σ−1

2 )−1(Σ−1
1 m1 + Σ−1

2 m2)

C =
1
2
(mT

1 Σ−1
1 + mT

2 Σ−1
2 )(Σ−1

1 + Σ−1
2 )−1(Σ−1

1 m1 + Σ−1
2 m2)

−1
2

(
mT

1 Σ−1
1 m1 + mT

2 Σ−1
2 m2

)

In a trace formulation (assuming Σ1,Σ2 are symmetric)

−1
2
Tr((X−M1)T Σ−1

1 (X−M1))

−1
2
Tr((X−M2)T Σ−1

2 (X−M2))

= −1
2
Tr[(X−Mc)T Σ−1

c (X−Mc)] + C

Σ−1
c = Σ−1

1 + Σ−1
2

Mc = (Σ−1
1 + Σ−1

2 )−1(Σ−1
1 M1 + Σ−1

2 M2)

C =
1
2
Tr

[
(Σ−1

1 M1 + Σ−1
2 M2)T (Σ−1

1 + Σ−1
2 )−1(Σ−1

1 M1 + Σ−1
2 M2)

]

−1
2
Tr(MT

1 Σ−1
1 M1 + MT

2 Σ−1
2 M2)
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7.2.6 Product of gaussian densities

Let Nx(m,Σ) denote a density of x, then

Nx(m1,Σ1) · Nx(m2,Σ2) = ccNx(mc,Σc)

cc = Nm1(m2, (Σ1 + Σ2))

=
1√

det(2π(Σ1 + Σ2))
exp

[
−1

2
(m1 −m2)T (Σ1 + Σ2)−1(m1 −m2)

]

mc = (Σ−1
1 + Σ−1

2 )−1(Σ−1
1 m1 + Σ−1

2 m2)
Σc = (Σ−1

1 + Σ−1
2 )−1

but note that the product is not normalized as a density of x.

7.3 Moments

7.3.1 Mean and covariance of linear forms

First and second moments. Assume x ∼ N (m,Σ)

E(x) = m

Cov(x,x) = Var(x) = Σ = E(xxT )− E(x)E(xT ) = E(xxT )−mmT

As for any other distribution is holds for gaussians that

E[Ax] = AE[x]

Var[Ax] = AVar[x]AT

Cov[Ax,By] = ACov[x,y]BT

7.3.2 Mean and variance of square forms

Mean and variance of square forms: Assume x ∼ N (m,Σ)

E(xxT ) = Σ + mmT

E[xT Ax] = Tr(AΣ) + mT Am

Var(xT Ax) = 2σ4Tr(A2) + 4σ2mT A2m

E[(x−m′)T A(x−m′)] = (m−m′)T A(m−m′) + Tr(AΣ)

Assume x ∼ N (0, σ2I) and A and B to be symmetric, then

Cov(xT Ax,xT Bx) = 2σ4Tr(AB)
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7.3.3 Cubic forms

E[xbT xxT ] = mbT (M + mmT ) + (M + mmT )bmT

+bT m(M−mmT )

7.3.4 Mean of Quartic Forms

E[xxT xxT ] = 2(Σ + mmT )2 + mT m(Σ−mmT )
+Tr(Σ)(Σ + mmT )

E[xxT AxxT ] = (Σ + mmT )(A + AT )(Σ + mmT )
+mT Am(Σ−mmT ) + Tr[AΣ(Σ + mmT )]

E[xT xxT x] = 2Tr(Σ2) + 4mT Σm + (Tr(Σ) + mT m)2

E[xT AxxT Bx] = Tr[AΣ(B + BT )Σ] + mT (A + AT )Σ(B + BT )m
+(Tr(AΣ) + mT Am)(Tr(BΣ) + mT Bm)

E[aT xbT xcT xdT x]
= (aT (Σ + mmT )b)(cT (Σ + mmT )d)

+(aT (Σ + mmT )c)(bT (Σ + mmT )d)
+(aT (Σ + mmT )d)(bT (Σ + mmT )c)− 2aT mbT mcT mdT m

E[(Ax + a)(Bx + b)T (Cx + c)(Dx + d)T ]
= [AΣBT + (Am + a)(Bm + b)T ][CΣDT + (Cm + c)(Dm + d)T ]

+[AΣCT + (Am + a)(Cm + c)T ][BΣDT + (Bm + b)(Dm + d)T ]
+(Bm + b)T (Cm + c)[AΣDT − (Am + a)(Dm + d)T ]
+Tr(BΣCT )[AΣDT + (Am + a)(Dm + d)T ]

E[(Ax + a)T (Bx + b)(Cx + c)T (Dx + d)]
= Tr[AΣ(CT D + DT C)ΣBT ]

+[(Am + a)T B + (Bm + b)T A]Σ[CT (Dm + d) + DT (Cm + c)]
+[Tr(AΣBT ) + (Am + a)T (Bm + b)][Tr(CΣDT ) + (Cm + c)T (Dm + d)]

See [7].

7.3.5 Moments

E[x] =
∑

k

ρkmk

Cov(x) =
∑

k

∑

k′
ρkρk′(Σk + mkmT

k −mkmT
k′)
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7.4 Miscellaneous

7.4.1 Whitening

Assume x ∼ N (m,Σ) then

z = Σ−1/2(x−m) ∼ N (0, I)

Conversely having z ∼ N (0, I) one can generate data x ∼ N (m,Σ) by setting

x = Σ1/2z + m ∼ N (m,Σ)

Note that Σ1/2 means the matrix which fulfils Σ1/2Σ1/2 = Σ, and that it exists
and is unique since Σ is positive definite.

7.4.2 The Chi-Square connection

Assume x ∼ N (m,Σ) and x to be n dimensional, then

z = (x−m)T Σ−1(x−m) ∼ χ2
n

7.4.3 Entropy

Entropy of a D-dimensional gaussian

H(x) =
∫
N (m,Σ) lnN (m,Σ)dx = − ln

√
det(2πΣ)− D

2

7.5 One Dimensional Mixture of Gaussians

7.5.1 Density and Normalization

p(s) =
K∑

k

ρk√
2πσ2

k

exp
[
−1

2
(s− µk)2

σ2
k

]

7.5.2 Moments

An useful fact of MoG, is that

〈xn〉 =
∑

k

ρk〈xn〉k

where 〈·〉k denotes average with respect to the k.th component. We can calculate
the first four moments from the densities

p(x) =
∑

k

ρk
1√

2πσ2
k

exp
[
−1

2
(x− µk)2

σ2
k

]

p(x) =
∑

k

ρkCk exp
[
ck2x

2 + ck1x
]

as
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〈x〉 =
∑

k ρkµk =
∑

k ρk

[
−ck1
2ck2

]

〈x2〉 =
∑

k ρk(σ2
k + µ2

k) =
∑

k ρk

[
−1
2ck2

+
(
−ck1
2ck2

)2
]

〈x3〉 =
∑

k ρk(3σ2
kµk + µ3

k) =
∑

k ρk

[
ck1

(2ck2)2

[
3− c2

k1
2ck2

]]

〈x4〉 =
∑

k ρk(µ4
k + 6µ2

kσ2
k + 3σ4

k) =
∑

k ρk

[(
1

2ck2

)2
[(

ck1
2ck2

)2

− 6 c2
k1

2ck2
+ 3

]]

If all the gaussians are centered, i.e. µk = 0 for all k, then

〈x〉 = 0 = 0
〈x2〉 =

∑
k ρkσ2

k =
∑

k ρk

[
−1
2ck2

]

〈x3〉 = 0 = 0

〈x4〉 =
∑

k ρk3σ4
k =

∑
k ρk3

[
−1
2ck2

]2

From the un-centralized moments one can derive other entities like

〈x2〉 − 〈x〉2 =
∑

k,k′ ρkρk′
[
µ2

k + σ2
k − µkµk′

]
〈x3〉 − 〈x2〉〈x〉 =

∑
k,k′ ρkρk′

[
3σ2

kµk + µ3
k − (σ2

k + µ2
k)µk′

]
〈x4〉 − 〈x2〉2 =

∑
k,k′ ρkρk′

[
µ4

k + 6µ2
kσ2

k + 3σ4
k − (σ2

k + µ2
k)(σ2

k′ + µ2
k′)

]

7.6 Mixture of Gaussians

7.6.1 Density

The variable x is distributed as a mixture of gaussians if it has the density

p(x) =
K∑

k=1

ρk
1√

det(2πΣk)
exp

[
−1

2
(x−mk)T Σ−1

k (x−mk)
]

where ρk sum to 1 and the Σk all are positive definite.
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8 Miscellaneous

8.1 Functions and Series

8.1.1 Finite Series

(Xn − I)(X− I)−1 = I + X + X2 + ... + Xn−1

8.1.2 Taylor Expansion of Scalar Function

Consider some scalar function f(x) which takes the vector x as an argument.
This we can Taylor expand around x0

f(x) ∼= f(x0) + g(x0)T (x− x0) +
1
2
(x− x0)T H(x0)(x− x0)

where

g(x0) =
∂f(x)

∂x

∣∣∣
x0

H(x0) =
∂2f(x)
∂x∂xT

∣∣∣
x0

8.1.3 Taylor Expansion of Vector Functions

8.1.4 Matrix Functions by Infinite Series

As for analytical functions in one dimension, one can define a matrix function
for square matrices X by an infinite series

f(X) =
∞∑

n=0

cnXn

assuming the limit exists and is finite. If the coefficients cn fulfils
∑

n cnxn < ∞,
then one can prove that the above series exists and is finite, see [1]. Thus for
any analytical function f(x) there exists a corresponding matrix function f(x)
constructed by the Taylor expansion. Using this one can prove the following
results:

1) A matrix A is a zero of its own characteristic polynomium [1]:

p(λ) = det(Iλ−A) =
∑

n

cnλn ⇒ p(A) = 0

2) If A is square it holds that [1]

A = UBU−1 ⇒ f(A) = Uf(B)U−1

3) A useful fact when using power series is that

An → 0 for n →∞ if |A| < 1
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8.1.5 Exponential Matrix Function

In analogy to the ordinary scalar exponential function, one can define exponen-
tial and logarithmic matrix functions:

eA =
∞∑

n=0

1
n!

An = I + A +
1
2
A2 + ...

e−A =
∞∑

n=0

1
n!

(−1)nAn = I−A +
1
2
A2 − ...

etA =
∞∑

n=0

1
n!

(tA)n = I + tA +
1
2
t2A2 + ...

ln(I + A) =
∞∑

n=1

(−1)n−1

n
An = A− 1

2
A2 +

1
3
A3 − ...

Some of the properties of the exponential function are [1]

eAeB = eA+B if AB = BA

(eA)−1 = e−A

d

dt
etA = AetA, t ∈ R

8.1.6 Trigonometric Functions

sin(A) =
∞∑

n=0

(−1)nA2n+1

(2n + 1)!
= A− 1

3!
A3 +

1
5!

A5 − ...

cos(A) =
∞∑

n=0

(−1)nA2n

(2n)!
= I− 1

2!
A2 +

1
4!

A4 − ...

8.2 Indices, Entries and Vectors

Let ei denote the column vector which is 1 on entry i and zero elsewhere, i.e.
(ei)j = δij , and let Jij denote the matrix which is 1 on entry (i, j) and zero
elsewhere.

8.2.1 Rows and Columns

i.th row of A = eT
i A

j.th column of A = Aej
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8.2.2 Permutations

Let P be some permutation matrix, e.g.

P =




0 1 0
1 0 0
0 0 1


 =

[
e2 e1 e3

]
=




eT
2

eT
1

eT
3




then

AP =
[

Ae2 Ae1 Ae2

]
PA =




eT
2 A

eT
1 A

eT
3 A




That is, the first is a matrix which has columns of A but in permuted sequence
and the second is a matrix which has the rows of A but in the permuted se-
quence.

8.2.3 Swap and Zeros

Assume A to be n×m and Jij to be m× p

AJij =
[

0 0 . . . Ai . . . 0
]

i.e. an n× p matrix of zeros with the i.th column of A in the placed of the j.th
column. Assume A to be n×m and Jij to be p× n

JijA =




0
0
...

Aj

...
0




i.e. an p ×m matrix of zeros with the j.th row of A in the placed of the i.th
row.

8.2.4 Rewriting product of elements

AkiBjl = (AeieT
j B)kl = (AJijB)kl

AikBlj = (AT eieT
j BT )kl = (AT JijBT )kl

AikBjl = (AT eieT
j B)kl = (AT JijB)kl

AkiBlj = (AeieT
j BT )kl = (AJijBT )kl
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8.2.5 Properties of the Singleentry Matrix

If i = j
JijJij = Jij (Jij)T (Jij)T = Jij

Jij(Jij)T = Jij (Jij)T Jij = Jij

If i 6= j
JijJij = 0 (Jij)T (Jij)T = 0

Jij(Jij)T = Jii (Jij)T Jij = Jjj

8.2.6 The Singleentry Matrix in Scalar Expressions

Assume A is n×m and J is m× n, then

Tr(AJij) = Tr(JijA) = (AT )ij

Assume A is n× n, J is n×m and B is m× n, then

Tr(AJijB) = (AT BT )ij

Tr(AJjiB) = (BA)ij

Tr(AJijJijB) = diag(AT BT )ij

Assume A is n× n, Jij is n×m B is m× n, then

xT AJijBx = (AT xxT BT )ij

xT AJijJijBx = diag(AT xxT BT )ij

8.2.7 Structure Matrices

The structure matrix is defined by

∂A
∂Aij

= Sij

If A has no special structure then

Sij = Jij

If A is symmetric then
Sij = Jij + Jji − JijJij
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8.3 Solutions to Systems of Equations

8.3.1 Existence in Linear Systems

Assume A is n×m and consider the linear system

Ax = b

Construct the augmented matrix B = [A b] then

Condition Solution
rank(A) = rank(B) = m Unique solution x
rank(A) = rank(B) < m Many solutions x
rank(A) < rank(B) No solutions x

8.3.2 Standard Square

Assume A is square and invertible, then

Ax = b ⇒ x = A−1b

8.3.3 Degenerated Square

8.3.4 Over-determined Rectangular

Assume A to be n×m, n > m (tall) and rank(A) = m, then

Ax = b ⇒ x = (AT A)−1AT b = A+b

that is if there exists a solution x at all! If there is no solution the following
can be useful:

Ax = b ⇒ xmin = A+b

Now xmin is the vector x which minimizes ||Ax− b||2, i.e. the vector which is
”least wrong”. The matrix A+ is the pseudo-inverse of A. See [3].

8.3.5 Under-determined Rectangular

Assume A is n×m and n < m (”broad”).

Ax = b ⇒ xmin = AT (AAT )−1b

The equation have many solutions x. But xmin is the solution which minimizes
||Ax−b||2 and also the solution with the smallest norm ||x||2. The same holds
for a matrix version: Assume A is n×m, X is m× n and B is n× n, then

AX = B ⇒ Xmin = A+B

The equation have many solutions X. But Xmin is the solution which minimizes
||AX−B||2 and also the solution with the smallest norm ||X||2. See [3].
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Similar but different: Assume A is square n × n and the matrices B0,B1

are n×N , where N > n, then if B0 has maximal rank

AB0 = B1 ⇒ Amin = B1BT
0 (B0BT

0 )−1

where Amin denotes the matrix which is optimal in a least square sense. An
interpretation is that A is the linear approximation which maps the columns
vectors of B0 into the columns vectors of B1.

8.3.6 Linear form and zeros

Ax = 0, ∀x ⇒ A = 0

8.3.7 Square form and zeros

If A is symmetric, then

xT Ax = 0, ∀x ⇒ A = 0

8.4 Block matrices

Let Aij denote the ij.th block of A.

8.4.1 Multiplication

Assuming the dimensions of the blocks matches we have
[

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

8.4.2 The Determinant

The determinant can be expressed as by the use of

C1 = A11 −A12A−1
22 A21

C2 = A22 −A21A−1
11 A12

as

det
([

A11 A12

A21 A22

])
= det(A22) · det(C1) = det(A11) · det(C2)

8.4.3 The Inverse

The inverse can be expressed as by the use of

C1 = A11 −A12A−1
22 A21

C2 = A22 −A21A−1
11 A12
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as [
A11 A12

A21 A22

]−1

=
[

C−1
1 −A−1

11 A12C−1
2

−C−1
2 A21A−1

11 C−1
2

]

=
[

A−1
11 + A−1

11 A12C−1
2 A21A−1

11 −C−1
1 A12A−1

22

−A−1
22 A21C−1

1 A−1
22 + A−1

22 A21C−1
1 A12A−1

22

]

8.4.4 Block diagonal

For block diagonal matrices we have

[
A11 0
0 A22

]−1

=
[

(A11)−1 0
0 (A22)−1

]

det
([

A11 0
0 A22

])
= det(A11) · det(A22)

8.5 Matrix Norms

8.5.1 Definitions

A matrix norm is a mapping which fulfils

||A|| ≥ 0 ||A|| = 0 ⇔ A = 0

||cA|| = |c|||A||, c ∈ R
||A + B|| ≤ ||A||+ ||B||

8.5.2 Examples

||A||1 = max
j

∑

i

|Aij |

||A||2 =
√

max eig(AT A)

||A||p = ( max
||x||p=1

||Ax||p)1/p

||A||∞ = max
i

∑

j

|Aij |

||A||F =
√∑

ij

|Aij |2 (Frobenius)

||A||max = max
ij

|Aij |
||A||KF = ||sing(A)||1 (Ky Fan)

where sing(A) is the vector of singular values of the matrix A.
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8.5.3 Inequalities

E. H. Rasmussen has in yet unpublished material derived and collected the
following inequalities. They are collected in a table as below, assuming A is an
m× n, and d = min{m, n}

||A||max ||A||1 ||A||∞ ||A||2 ||A||F ||A||KF

||A||max 1 1 1 1 1
||A||1 m m

√
m

√
m

√
m

||A||∞ n n
√

n
√

n
√

n
||A||2

√
mn

√
n

√
m 1 1

||A||F
√

mn
√

n
√

m
√

d 1
||A||KF

√
mnd

√
nd

√
md d

√
d

which are to be read as, e.g.

||A||2 ≤
√

m · ||A||∞

8.6 Positive Definite and Semi-definite Matrices

8.6.1 Definitions

A matrix A is positive definite if and only if

xT Ax > 0, ∀x

A matrix A is positive semi-definite if and only if

xT Ax ≥ 0, ∀x

Note that if A is positive definite, then A is also positive semi-definite.

8.6.2 Eigenvalues

The following holds with respect to the eigenvalues:

A pos. def. ⇒ eig(A) > 0
A pos. semi-def. ⇒ eig(A) ≥ 0

8.6.3 Trace

The following holds with respect to the trace:

A pos. def. ⇒ Tr(A) > 0
A pos. semi-def. ⇒ Tr(A) ≥ 0

8.6.4 Inverse

If A is positive definite, then A is invertible and A−1 is also positive definite.
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8.6.5 Diagonal

If A is positive definite, then Aii > 0,∀i

8.6.6 Decomposition I

The matrix A is positive semi-definite of rank r ⇔ there exists a matrix B of
rank r such that A = BBT

The matrix A is positive definite ⇔ there exists an invertible matrix B such
that A = BBT

8.6.7 Decomposition II

Assume A is an n× n positive semi-definite, then there exists an n× r matrix
B of rank r such that BT AB = I.

8.6.8 Equation with zeros

Assume A is positive semi-definite, then XT AX = 0 ⇒ AX = 0

8.6.9 Rank of product

Assume A is positive definite, then rank(BABT ) = rank(B)

8.6.10 Positive definite property

If A is n× n positive definite and B is r × n of rank r, then BABT is positive
definite.

8.6.11 Outer Product

If X is n× r of rank r, then XXT is positive definite.

8.6.12 Small pertubations

If A is positive definite and B is symmetric, then A− tB is positive definite for
sufficiently small t.

8.7 Integral Involving Dirac Delta Functions

Assuming A to be square, then
∫

p(s)δ(x−As)ds =
1

det(A)
p(A−1x)

Assuming A to be ”underdetermined”, i.e. ”tall”, then
∫

p(s)δ(x−As)ds =

{
1√

det(AT A)
p(A+x) if x = AA+x

0 elsewhere

}
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See [8].

8.8 Miscellaneous

For any A it holds that

rank(A) = rank(AT ) = rank(AAT ) = rank(AT A)

Assume A is positive definite. Then

rank(BT AB) = rank(B)

A is positive definite ⇔ ∃B invertible, such that A = BBT
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A Proofs and Details

A.0.1 Proof of Equation 14

Essentially we need to calculate

∂(Xn)kl

∂Xij
=

∂

∂Xij

∑
u1,...,un−1

Xk,u1Xu1,u2 ...Xun−1,l

= δk,iδu1,jXu1,u2 ...Xun−1,l

+Xk,u1δu1,iδu2,j ...Xun−1,l

...
+Xk,u1Xu1,u2 ...δun−1,iδl,j

=
n−1∑
r=0

(Xr)ki(Xn−1−r)jl

=
n−1∑
r=0

(XrJijXn−1−r)kl

Using the properties of the single entry matrix found in Sec. 8.2.5, the result
follows easily.

A.0.2 Details on Eq. 47

∂ det(XHAX) = det(XHAX)Tr[(XHAX)−1∂(XHAX)]
= det(XHAX)Tr[(XHAX)−1(∂(XH)AX + XH∂(AX))]
= det(XHAX)

(
Tr[(XHAX)−1∂(XH)AX] + Tr[(XHAX)−1XH∂(AX)]

)

= det(XHAX)
(
Tr[AX(XHAX)−1∂(XH)] + Tr[(XHAX)−1XHA∂(X)]

)

First, the derivative is found with respect to the real part of X

∂ det(XHAX)
∂<X

= det(XHAX)
(Tr[AX(XHAX)−1∂(XH)]

∂<X
+

Tr[(XHAX)−1XHA∂(X)]
∂<X

)

= det(XHAX)
(
AX(XHAX)−1 + ((XHAX)−1XHA)T

)

Through the calculations, (16) and (35) were used. In addition, by use of (36),
the derivative is found with respect to the imaginary part of X

i
∂ det(XHAX)

∂=X
= i det(XHAX)

(Tr[AX(XHAX)−1∂(XH)]
∂=X

+
Tr[(XHAX)−1XHA∂(X)]

∂=X

)

= det(XHAX)
(
AX(XHAX)−1 − ((XHAX)−1XHA)T

)
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Hence, derivative yields

∂ det(XHAX)
∂X

=
1
2

(∂ det(XHAX)
∂<X

− i
∂ det(XHAX)

∂=X

)

= det(XHAX)
(
(XHAX)−1XHA

)T

and the complex conjugate derivative yields

∂ det(XHAX)
∂X∗ =

1
2

(∂ det(XHAX)
∂<X

+ i
∂ det(XHAX)

∂=X

)

= det(XHAX)AX(XHAX)−1

Notice, for real X, A, the sum of (44) and (45) is reduced to (13).
Similar calculations yield

∂ det(XAXH)
∂X

=
1
2

(∂ det(XAXH)
∂<X

− i
∂ det(XAXH)

∂=X

)

= det(XAXH)
(
AXH(XAXH)−1

)T (46)

and

∂ det(XAXH)
∂X∗ =

1
2

(∂ det(XAXH)
∂<X

+ i
∂ det(XAXH)

∂=X

)

= det(XAXH)(XAXH)−1XA (47)
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